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FRACTAL ANALYSIS OF YIELD MAPS

R. Ehsani,  D. Karimi,  K. H. Lee

ABSTRACT. Agricultural crop yield data usually are highly nonlinear and complex. Basic mathematical and statistical
techniques are sometimes insufficient to describe the nature, trend, or cause of variations in yield. This article investigates
fractal analysis of agricultural yield maps and describes a method of applying fractal analysis to multiple years of yield data.
It also shows how patterns of yield variation can be described by fractal geometry. Crop yield was measured and mapped for
an agricultural field for five consecutive years. In order to obtain a sufficiently dense set of points necessary for valid fractal
analysis, a method was proposed to transfer the data points from 3ℜ  to 2ℜ . Analysis of the resulting data set revealed
multifractality  of the yield variations. It was shown that multifractal measures such as the Rényi spectrum can be used to
quantify and compare global and local yield variations.

Keywords. Fractal analysis, Multifractals, Precision agriculture, Spatial variability, Yield map.

nalyzing and interpreting yield data is one of the
main steps in successful application of precision
agriculture.  Assessment and interpretation of
yield data can be very difficult because some‐

times there are not enough data on the soil or plant factors that
cause yield variability. Most of the common attempts to char‐
acterize in‐field spatial yield variability have used basic sta‐
tistical measures or geostatistical methods (Eghball et al.,
1999; Blackmore et al., 2003). Because in‐field variations are
highly non‐linear and complex, these methods cannot fully
describe the variation patterns.

Maps of crop yield variability have been studied more
than any other type of variability map because crop yield
maps show the final outcome of management decisions and
indicate overall field variability better than other variability
maps. Spatial variability in crop yield is the result of interac‐
tions among many factors, including topography of the ter‐
rain, soil physical and chemical properties, and soil water
content. These factors generate variations at nested scales
that may result in self‐similar patterns of variation (Green
and Erskine, 2004). If so, these variation patterns can be de‐
scribed by fractal geometry (Peitgen et al., 2004) and quanti‐
fied by fractal dimensions or fractal dimension spectra.
Moreover, using methods such as joint multifractal analysis,
the variability of crop yield can be related to other spatial
variables of interest (Meneveau et al., 1990).Knowledge of
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scale‐dependent variation can also be useful when generaliz‐
ing analysis results or management decisions from a smaller
to a larger scale or vice versa (Bekele et al., 2005).

A few studies have used fractal analysis to characterize
temporal and spatial variability in an agricultural field. Per‐
fect and Blevins (1997) used fractal analysis of soil structure
to compare different tillage practices. Evaluation of the effect
of variable‐rate fertilizer application strategies has also been
completed using fractal analysis of soil nitrate (Eghball et al.,
1999). Fractal analysis of temporal and spatial variability in
yield data has shown that temporal (year‐to‐year) variability
in crop yield might be more significant than any spatial vari‐
ability (Eghball and Varvel, 1997). Multifractal and joint
multifractal  analysis methods have been used to investigate
the variability of crop yield with terrain slope (Kravchenko
et al., 2000). Furthermore, fractal dimensions have been used
to quantify the variability in crop yield and near‐surface soil
water (Green and Erskine, 2004) and to identify the scales of
variation of soil electrical conductivity (Bekele et al., 2005).
Fekete (2001) computed fractal dimension of crop yield by
a time series analysis of yield monitor output and the thresh‐
ing cylinder torque.

The objectives of this study were to introduce an appropri‐
ate methodology for fractal analysis of agricultural yield
maps and to demonstrate how the developed method can be
used to quantify and compare global and local variations in
crop yield.

FRACTAL GEOMETRY
SELF‐SIMILARITY AND FRACTALS

The word “fractal” was coined by Benoit B. Mandelbrot
in 1975 (Mandelbrot, 1977) and refers to a rough or frag‐
mented geometric shape or a quantity that displays self‐
similarity on several scales. In other words, a fractal is a
geometric shape or a pattern of variation that can be divided
into parts, each of which is, at least approximately or statisti‐
cally, a scaled‐down copy of the whole. Mandelbrot (1983)
formally defines a fractal as “a set for which the Hausdorff‐
Besicovitch dimension strictly exceeds the topological di‐
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mension.” Therefore, although self‐similarity is the
fundamental concept behind fractals, not every self‐similar
object is a fractal. Moreover, as was implied before, exact
self‐similarity  is only seen in mathematical fractals such as
the Sierpinski gasket and the Minkowski curve (fig. 1). Frac‐
tal patterns that are found in natural objects or phenomena
show quasi‐self‐similarity or statistical self‐similarity; in
other words, they have numerical or statistical qualities that
scale in a power law fashion with the scale of magnification.
Simple mathematical fractals are monofractals, that is, they
must be scaled by a constant number to achieve self‐
similarity. Most natural fractals, however, show self‐
similarity under arbitrary scaling (Chen, 1997). These
objects are a mixture of many monofractals and are referred
to as multifractals.

FRACTAL DIMENSIONS

In the computation of the Hausdorff fractal dimension for
the Minkowski curve shown in figure 1, the “vel” refers to the
volumetric elements used. The fractal is covered by a set of
volumetric elements of size rk. In this study, we have adopted
square vels, but any arbitrary shape works as well. The num‐
ber (Nk) of the vels required to completely cover the object
is counted. Then, the size of the vel is reduced, usually in a
dyadic form, i.e., rk+1 = rk/2, and the new number (Nk +1) of
vels required to cover the fractal is counted. For mathemati‐
cal fractals, this step can be iterated indefinitely. But for natu‐
ral fractals, the power law relationships will saturate at some
point because no further detail is seen after a finite number
of magnifications (Vicsek, 1992). Nk is assumed to have a
power law relationship with rk:
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where DH is called the Hausdorff dimension of the object un‐
der consideration (Mandelbrot, 1977). The regression line on
a plot of log(Nk) versus log(1/rk) for several vel coverings is
the simplest way to find DH. In other words, in the limit:
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For a non‐fractal curve, such as a line or a differentiable
curve, DH equals one. For a fractal plane curve, however, it

Figure 1. Minkowski curve: An example of mathematical fractals.

will be greater than one and less than or equal to two. For the
Minkowski curve shown in figure 1, it equals 1.50.

The Hausdorff dimension belongs to morphology‐based
fractal dimensions. The value of these fractal dimensions de‐
pends only on the morphology of the fractal. More precisely,
morphological  fractal dimensions quantify the degree of
irregularity of the fractal: the higher the degree of irregularity
of the fractal, the larger the computed dimension. There are
situations in which morphology‐based fractal dimensions do
not provide a sufficient description of the fractal pattern. For
example, in fractal analysis of a strange attractor of a dynami‐
cal system, one is interested in time change, or evolution, of
the fractal. In fractal analysis of a turbulent flow, one is inter‐
ested in the distribution of a variable such as fluid pressure
or velocity over a spatial fractal. Therefore, a series of
entropy‐, variance‐, and transform‐based dimensions have
been defined to deal with these applications (Kinsner, 2005).
One important variation of entropy‐based fractal dimensions
is the information dimension DI (Peitgen et al., 2004):
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In this equation, H1 is the Shannon entropy given by:
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where pj is the probability of the fractal entering the jth vel
(for strange attractors) or the value of the measure of interest
in the jth vel. The value of pj has to be normalized before be‐
ing put in equation 4, so that:
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The Shannon entropy (Hlk) is in bits and quantifies infor‐
mation in a piece of data. Here, it is equivalent to the amount
of information necessary to specify a point of the fractal with
an accuracy of rk (Peitgen et al., 2004).

Another important variation of entropy‐based dimensions
is the correlation dimension (Dc), defined as (Peitgen et al.,
2004):
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The numerator in equation 6 is known as the correlation
sum and can be interpreted as a correlation between pairs of
adjacent points on the fractal (Kinsner, 2005). It is important
to mention that equations 2, 3, and 6 assume that a power law
relationship exists between the terms that appear in the nu‐
merator and the vel size; otherwise, the object or phenome‐
non under study is not a fractal.

Characterization  by a single number, or dimension, is ade‐
quate only for those objects that show exact self‐similarity
(Chen, 1997). In fact, for such objects or phenomena, all of
the fractal dimensions result in the same value. As mentioned
before, natural fractals are only statistically self‐similar and
require more than one number to be characterized completely
(Kinsner, 2005). The Rényi spectrum of dimension is based
on the Rényi generalized entropy (Rényi, 1961), which is a
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Figure 2. Typical shape of the Rényi spectrum of dimensions for a multi‐
fractal object.

generalization of the Shannon entropy (eq. 4) and can be used
to characterize the distribution of multifractals. The Rényi
spectrum of dimensions is defined as (Peitgen et al., 2004):
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where q is the moment order, and Dq is the dimension of the
multifractal  object for a given q. Theoretically, the spectrum
can be computed for the whole range of ∞<<−∞ q , but in
practice,  due to limited accuracy in numerical calculations,
the spectrum is computed on a limited range, usually -10 <
q < 10. Therefore, instead of a single dimension, Dq provides
a continuous range, or spectrum, of dimensions. It is easy to
show that for q = 0, 1, and 2, the Rényi dimension reduces to
Hausdorff, information, and correlation dimensions, respec‐
tively (Peitgen et al., 2004). In addition, some other
single‐valued fractal dimensions correspond to Dq for some
value of the moment q; therefore, the Rényi spectrum can be
thought of as the “unifying framework” of all single dimen‐
sions (Kinsner, 2005). For monofractals, the value of Dq is
constant for all values of q, while for multifractals, it is a
monotonically  decreasing function of q (fig. 2). Therefore,
the Rényi spectrum separates monofractals, for which the
spectrum is a horizontal line, from multifractals, for which it
is monotonically decreasing (Halsey et al., 1986). This curve
can be interpreted as a “fingerprint” of the fractal. A very im‐
portant feature of this signature is that it has limited bounds;
that is, ∞D  and ∞−D  are finite.

Perhaps the best way to understand the fractal dimension
of a yield variation pattern is to visualize this pattern as a 3D
surface. The Hausdorff fractal dimension shows the degree of
unevenness of this surface. For a smooth, that is differenti‐
able, surface, DH = 2, while for an extremely rough surface,
DH will increase towards 3. The Rényi spectrum of dimen‐
sions can be thought of as a generalization of this concept.
Using equation 7, the value of the Rényi dimension (Dq) for
large values of q is mostly determined by those vels that have

a high value of the variable under study, whereas for small
values of q, Dq is determined mostly by those vels that have
a low value of the variable. In other words, for small values
of q, Dq indicates roughness of yield variation at low‐yield
areas, while for large values of q, it shows the same thing
mainly for those spots with high yield. This insight is unique
to fractal analysis and cannot be obtained using other meth‐
ods.

METHODS
The study site was a 24 ha field in Ohio, and the period of

the study was from 1997 to 2001. The site was under wheat
cultivation in 1997 and 1999, under soybean cultivation in
1998 and 2001, and under corn in 2000. A 432 × 288 m
rectangle‐shaped  central portion of the field was chosen for
analysis. This choice was made based on the limitations in
terms of the size and shape of the field and the requirement
that the size of vel coverings should form a sequence of dyad‐
ic numbers.

A grain combine harvester was used for harvesting the
corn, wheat, and soybean. During harvesting, the yield data
were obtained by a yield monitoring system (AgLeader,
Ames, Iowa). The yield monitoring systems were calibrated
each season according to the manufacturer's instructions.
The yield monitor software program was able to export the
yield data in AgLeader advanced format (Shearer et al.,
1999), which is an ASCII format. The spatial resolution of the
yield data was determined by the combine head width and the
yield log interval. As shown in table 1, the combine head and
log interval were 5.9 to 7.6 m and 1.4 to 1.8 m, respectively,
so that the spatial resolution was between 10.0 and 15.7 m2.
The number of data points in the chosen field of 432 × 288
m was between 7,900 and 12,500. The original data were in‐
terpolated to obtain the value of yield on a uniform grid of
2.25 m. Since the map size was 432 × 288 m, this provided
192 and 128 points in each direction, so that a total of 24,576
data points for the entire map was made. The triangle‐based
linear interpolation functionality in Matlab (ver. 7.1, The
Math Works, Inc., Natick, Mass.) was used for interpolation.
Table 1 also shows the mean and coefficient of variation (CV)
of the yield data for each of the five years. Although the head‐
er width of the combines was larger than 2.25 m, this inter‐
polation did not introduce an error because, as described
later, the smallest vel size in this analysis was 4.5 m.

A dithering technique was used to convert the original
data points into a set of points in 2ℜ . As mentioned before,
the yield was determined by interpolation on a grid of 192 ×
128 points. These data points can be considered as graph of
yield versus location in 3ℜ . In the proposed approach, the val‐
ue of yield at each interpolated point was first mapped to an
integer in the range of 1 to 32. This range was chosen based
on the reported accuracy for typical grain yield monitors

Table 1. Summary of the yield data.

Crop and Year
Combine Head

Width (m)
Yield Log

Interval (m)
Resolution of
the Data (m2)

Number of
Data Points

Mean Yield
(Mg ha 1)

CV
(%)

Wheat in 1997 7.6 1.6 12.2 10,100 4.21 0.133
Soybean in 1998 8.5 1.7 14.5 8,600 3.62 0.144
Wheat in 1999 8.6 1.4 12.0 10,300 4.46 0.130
Corn in 2000 5.9 1.7 10.0 12,500 10.90 0.139

Soybean in 2001 8.7 1.8 15.7 7,900 3.60 0.133
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(a)      (b)

Figure 3. Corn yield map in the year 2000: (a) contour plot, and (b) transformed using the dithering technique.

(Arslan and Colvin, 2002; Loghavi and Ehsani, 2004; Li et
al., 2005,). Then, each of the points in 3ℜ  was replaced by an
equivalent number of random points in the corresponding
square in the 2ℜ  space. For example, if the normalized yield
value at a particular location was 20, then 20 random points
were placed in the corresponding square of size 2.25 m. An
example of such a transformation is shown in figure 3b.

Fractal analysis of the map obtained using this transforma‐
tion was performed by covering the map with a set of adjacent
square vels and computing the Rényi fractal dimension spec‐
trum (eq. 7). In the process of moving from 3ℜ  to 2ℜ , no addi‐
tional information regarding the yield variations is
generated. The only reason for this conversion is to increase
the reliability of the fractal analysis by moving from a sparse
set of points in 3ℜ  to a much denser set of points in 2ℜ . Analy‐

sis of the dithered fractal in 2ℜ  is not the same as the analysis
of the original 3D fractal. Analysis of the original fractal
would be ideal, but it is not possible due to the small number
of points. Dithering provides a much larger number of points
in 2D. In other words, the accuracy in measurement of yield
is used to convert each point in 3D into a number of points to
create a much denser fractal. This is done in order to increase
the number of points in the fractal, which is a necessity for a
valid analysis.

RESULTS AND DISCUSSION
Figure 4 shows an example of the observed power law

relationship.  In this figure, the Shannon entropy (H1) has
been plotted against log(1/rk) for eight vel coverings for the
1997 wheat yield map. The largest vel size was 48 m, and the
smallest one was 0.375 m. The fractal dimension appears as
the slope of the regression line. Transforming the data points
from 3ℜ  into 2ℜ  using the dithering technique provided a
larger number of points. This allowed choosing vel sizes well
below 4.5 m without saturation of the power law relationship.

Figure 4. Example of the power law relationship for the 1997 wheat yield
map transformed into 2D.

Table 2. Hausdorff dimension (DH), information dimension (DI),
and correlation dimension (Dc) for the yield maps of different

crops and years obtained by an analysis in 2D.

Crop and Year DH DI Dc

Wheat in 1997 1.977 1.951 1.930
Soybean in 1998 1.977 1.953 1.934
Wheat in 1999 1.980 1.958 1.939
Corn in 2000 1.985 1.961 1.940

Soybean in 2001 1.985 1.963 1.945

Figure 5. Rényi fractal dimension spectrum for soybean yield in the years
1998 and 2001.
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Figure 6. Rényi fractal dimension spectrum for wheat and corn yield
maps obtained in the years 1997, 1999, and 2000.

Figure 7. The horizontal and vertical strips that have the largest and
smallest Rényi dimensions for the 1999 wheat yield map.

(a)

           (b)

Figure 8. (a) Dyadic segmentation of the yield map and (b) Rényi fractal
dimension spectra of M1, two M1/2, and six M1/4 of the 1997 wheat yield
map.

Table 2 shows the Hausdorff, information, and correlation di‐
mensions for each of the five years of yield data.

Figure 5 shows the spectrum of dimensions for the years
1998 and 2001 when the field was under soybean cultivation.
The most important observation from this figure is that Dq de‐
creases from above 2.2 to below 1.9, which indicates that
yield maps are multifractals. From figure 5, it can be said that
the variation in soybean yield was very close in 1998 and
2001, but it was slightly higher in 1998. This observation
agrees with the fact that the coefficient of variation (CV) of
the yield was 0.144 and 0.133 t h-1 in 1998 and 2001, respec‐
tively. The Hausdorff dimension (Dq at q = 0) is very close to
2 because almost all of the vels contain at least part of the

fractal (i.e., at least one point). It can also be seen that the two
graphs are very close at q = 1 and 2. Therefore, the informa-
tion and correlation dimensions are not enough to character‐
ize a specific yield map and the whole spectrum is needed.

The Rényi spectrum of dimensions for the yield maps of
the other three years is presented in figure 6. From figure 6,
it can be said that for those spots with relatively high yield,
degree of yield variation is very close for wheat and corn, but
for those areas that produce relatively low yield, corn yield
contains more variability than wheat yield. A similar state‐
ment can be made about soybean yield variation in 1998 and
2001 (fig. 5); high‐yield areas have a nearly equal degree of
variation in both years, but low‐yield areas have more varia‐
tion in 1998 than in 2001.

The overall behavior of such complex yield maps does not
include all local complexities. In order to study the local be‐
havior of the map, one can segment it into horizontal and ver-
tical strips or into smaller portions of the same shape and
study the fractality of these segments (Faghfouri et al., 2004).
Figure 7 shows the fractal dimension spectrum of the seg‐
mented vertical and horizontal strips that had the maximum
and minimum Rényi dimension spectra for the 1999 wheat
yield map. The original 1999 wheat yield map was first divid‐
ed into six horizontal strips of height 72 m, and the Rényi
fractal dimension spectrum of each strip was computed.
Then, the same map was divided into four vertical strips of
width 72 m, and the same analysis was completed for each
segment. This figure shows that horizontal strips are more
alike than vertical strips in terms of smoothness or roughness
of their yield variation pattern.
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Alternatively, the entire map can be segmented simulta‐
neously in horizontal and vertical directions, as shown in fig‐
ure 8a, and the Rényi spectra for the subregions can be
computed. Figure 8b shows the result of such an analysis for
the subregions of the wheat yield map of the year 1997.

In figure 8b, M1 shows the Rényi dimension of the entire
map, and two M1/2 and six M1/4 represent typical Rényi
dimension spectra for subregions of the map. Figure 8b shows
that the degree of variation in M1/2 subregions is very close
to the variation in the entire map. However, M1/4 subregions
have smaller dimensions as well as smaller variation in their
dimension over the range of -10 < q < 10. Figure 8b also
shows that while the dimension spectra of M1/2 segments are
very close, the dimension spectra of M1/4 segments vary more
significantly. This kind of analysis can be an effective tool for
finding appropriate management zones. Figure 8b shows that
in this case there is not much difference between M1/2 zones,
while M1/4 zones are quite different in terms of yield
variability. Those M1/4 zones that have larger fractal
dimension contain more variability compared to those with
smaller dimension. Therefore, if the field is to be divided into
several management zones, then zones of size M1/4 would be
appropriate,  and the Rényi dimension spectra can be used to
compare the degree of yield variability in different zones.

This research was aimed to suggest a new approach based
on the concepts of self‐similarity and fractals to analyze yield
variation in crop yield maps. In the last two decades, studies
have shown that many random‐appearing phenomena in
nature are dominated by the rules of chaos theory (Peitgen et
al., 2004). These chaotic processes will always produce self‐
similar patterns. It is likely that the major processes that result
in yield variability are also chaotic. If this is true, then fractal
analysis is in fact the natural approach for analyzing yield
variations. An investigation of this hypothesis, however, was
not the objective of this study. As the next phase of this study,
the characteristics of the fractal analysis and geostatistical
method for analyzing multiple years of yield data will be
investigated and compared.

CONCLUSIONS
The goal of this study was to investigate fractality of

agricultural  yield maps. A dithering technique was proposed
to transform the original data points into a 2D map. This
approach produces a dense set of points and will result in
reliable computations. Computation of the Rényi fractal
dimension spectrum established the multifractality of yield
maps, the major finding of our study. It was shown, by some
examples, that this method can be used to analyze and
compare yield spatial variability. Studying the change in the
power law relationship with scale can be quite informative.
A stronger or weaker power law relationship, i.e., a power
law relationship with a larger or smaller exponent, on some
scale would indicate rougher or smoother variations on that
scale. An illuminating feature of the Rényi spectrum is that
it gives different weights to low‐ and high‐yield areas based
on the value of the moment q. The results indicate that
roughness of yield variations for areas with relatively high
yield is very close for all five years of data and therefore
might be attributable to the characteristics of the terrain,
while for low‐yield spots, the differences are more
pronounced.
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